JEE2012 is a great opportunity for amateur
and professional astronomers to work together to accomplish something no one thought
was possible. That is to actually detect and measure the tenuous atmospheres
surrounding some of the moons of Jupiter as well as this same material that is
captured in a torus ring around Jupiter, called the Torus of Io. The most
exciting aspect of this project is since the moons of Jupiter are bright
compared to most astronomical endeavors, the JEE work can be done in the
smallest of telescopes, putting the ability to accomplish a real scientific
measurement in virtually anybody’s hands. We have documented measurements of
Io’s atmosphere in a small 80mm finderscope. Thus
even the simplest amateur astronomer can perform some of the same measurements
that our space probes have done flying out to Jupiter, and at a significant
fraction of the cost. Add to that, the Juno Space Probe is on its way to
Jupiter right now and they have expressed interest in some of our data. So here
is the chance to actually contribute to real science. http://www.nasa.gov/mission_pages/juno/main/index.html
JEE stands for Jovian Extinction Event. This
project has its roots in a discovery made in 2009 during the Jovian Mutual
Event season where anomalous dimming and brightening occurred during the period
of time outside of the actual mutual event. During this particular event of
20090807 Io was passing in front of Europa and occulting Europa with its body.
But several 10s of minutes prior to the occultation a slow dimming occurred,
and then following the occultation a reverse slow brightening began. Theorizing
that this dimming and brightening occurred due to the extinction of the light
of Europa by the tenuous material of the atmosphere surrounding Io, an
observing program called the Io Atmospheric Extinction Project (IAEP) was
launched to verify or refute this theory. Over a dozen folks from different
countries submitted many dozen data sets and documented 28 events the indeed
showed that extinction due to this tenuous material was being detected. We even
then accidently discovered that Europa had an even larger and easily detectable
atmosphere, as well as the Torus material that Io passes through constantly.
This formed a new observing program we now refer to as JEE.
The results of IAEP were published here:
Degenhardt, S. et. al (2010), Io and
Europa Atmosphere Detection through Jovian Mutual Events, The Society for Astronomical Science:
Proceedings for the 29th Annual Symposium on Telescope Science,
p. 91-100
http://scottysmightymini.com/JEE/SAS2010_Io_Europa_Degenhardt.pdf
Without getting into specific technicalities,
here is the basic understanding of how and where the material that makes up the
Jovian dust is created and scattered. Io, the moon closest to Jupiter, is under
a lot of stress from being so close to a super giant ball of gas. Io is
geologically and electrically very active. Volcanoes constantly spew dust and
gasses from Io, and the electrical and magnetic storm between Io and Jupiter
trap this material for a short period of time. Io’s weak gravitational field will
hold on to some of the material first, and our first order assumption is that
we have detected this material out to about a dozen Io radii around Io. We have
also found trails of it as many as 30 Io radii away from Io. Then the material
slips away from Io into space. Some of it is trapped in a magnetic torus ring
around Jupiter that Io passes through in its orbit, called the Torus of Io. It
then eventually migrates out in space. Europa sweeps up some of the material
and it is gravitationally bound temporarily out as far as 25 Europa radii.
These numbers are preliminary and are what we hope to clarify and quantify with
JEE2012.
The Jovian Mutual Event (JME) season occurs
when the plane of the orbits of Jupiter’s four brightest moons is edge on so
that they mutually eclipse and occult each other. This occurs at a frequency of
about every six years and has about a dozen months of regular mutual events
occurring. The difference and beauty of the JEE season is it lasts for years
due to the outer reaches of the Europa and Io atmospheres. Actually the JEE
season never ends because Io traverses through its torus nonstop, and about
once a day is passing through the eastern or western tips of its torus where
dimming are recordable.
During an occultation JME the body of one
moon occults or blocks our view of another moon line of sight to earth. So far
we have documented Io and Europa to have a tenuous but measurable atmosphere of
material. If Io or Europa is the moon in front occulting a moon behind it, then
the light from the moon behind Io or Europa will experience a slow dimming the
closer it gets to the occultation, and then a slow brightening after the
occultation. The total magnitude lost to extinction is very subtle, about 0.1
to 0.2 magnitude, but very measurable with quality
imagery and a few basic techniques. The most important technique is time. This
is the reason this has been overlooked for the 400 years since Galileo
discovered the moons surrounding Jupiter. The dimming, which is miniscule,
occurs over many 10s of minutes, and in some cases many hours. So collecting
images over the right period of time is one of the most important aspects of
the observation. The predictions made for JEE21012 are designed to facilitate
the understanding of the right period to observe. It is likely you will only be
able to record data over a very small portion of a total event, but your data
combined with others is what will make up a total lightcurve. This lightcurve
is almost 50 minutes long and you see the extinction dimming was over 20
minutes before the occultation and the length of the brightening is unknown
afterwards because of incomplete data.
The most important technique is time. This is
the reason this has been overlooked for the 400 years since Galileo discovered
the moons surrounding Jupiter. The dimming, which is miniscule, occurs over
many 10s of minutes, and in some cases many hours. So collecting images over
the right period of time is one of the most important aspects of the
observation. The predictions made for JEE21012 are designed to facilitate the
understanding of the right period to observe. It is likely you will only be
able to record data over a very small portion of a total event, but your data
combined with others is what will make up a total lightcurve.
The key to making a successful observation is
a few basic methods. First and foremost, try to keep Jupiter out of the field
of view of your recording at all times. Jupiter provides glare that makes
photometric reductions more difficult (but not impossible). This
is not always possible due to different observing systems, but try to
keep that in mind.
Next, understand the predictions to know
ahead of time which moon is the target, i.e. the one that will experience the
dimming. Know which one is causing the extinction, i.e. the moon in front for
our line of sight. In the early parts of the upcoming JEE season all you need
are those two moons in the FOV if at all possible. At reduction time I will
simply compare the intensity of the front moon to the back moon and get
something like this:
So in some cases you will want high magnification
to get just the target and front moon in the FOV and exclude Jupiter. In the
case where a JME occurs, it will require a third or fourth moon in order to do
a photometric reduction because your target and front moon actually merge to a
single spot.
The past observing complain was imaged
unfiltered in what is called photographic magnitude. We have desired photometry
in other colors given that JEEs involve extinction phenomenon, which certainly
implies varied colors are being extinguished by the dust and gasses that make
up Io and Europa’s atmosphere. I would predict, for instance, that given the
large amount of sodium and sulfur one would expect to see a deeper occultation
in the red portion of the spectrum. But with Rayleigh scattering the moons may
lose blue. B, V, and R imaging would help answer this. So it is desirable to
have different spectrum data. If you are able to include filtered data, that
would be bonus data for this round of observations in 2012. The AAVSO will
likely participate in JEE2012, and they are quite capable of multicolor
photometry. http://www.aavso.org/
You will see “wing data” length of time
suggestions in the predictions. Wind data means taking measurements outside of
an event before and after the event occurs in order to get a good baseline of
the intensities. The longer you can record before and after the better, because
one never knows what else exists outside of the predictions. This is in some
cases unchartered territory and methodology. That is why it is an “experiment”.
The next concept to understand is saturation.
If you make a recording or snapshot of Jupiter’s moons and the gain of the
camera or the exposure is too long, the disc of the
moons will saturate the pixels. The intensity profile of the moons will be
clipped or chopped off at the top. When clipping or saturation occurs
information is lost. It is important to know to back off from saturation when
making a JEE data recording (or any photometric data run). Here is an example
of a JEE that was accidently left in saturation. Note the small window on the
right showing the intensity profile of the moons circle in the video image on
the left and that their tops are flat or clipped due to saturation. If you are
new to this concept you will want to make some practice runs to learn how to
image out of saturation.
The next issue is time associated with your
data. Given that JEE events occur over 10s of minutes to hours
millisecond timing accuracy is not a must. But it is desirable that your
intensity data be accurate to at least a second of UT. There are ways to
accomplish this in crude manners. You could for instance log into the Naval
Observatory Master Clock and record the screen prior to and after your video
recording without stopping your recording
(http://tycho.usno.navy.mil/what.html). Another preferred more accurate way
would be to record a WWV time clock recording on your audio from a shortwave radio
at 2.5, 5, 10, 15, or 20MHZ. Or if you own a GPS based video timestamp device
like an IOTA VTI (http://videotimers.com/home.html) then you are as accurate as
you can get for one of these recordings, as it will lay the UT time from the
GPS atomic clocks onto your recording. As a last ditch effort your cell phone
time is likely accurate to within a second, but only use that as a last resort.
It is important in the end to report how you assigned the time to your
recording, so keep good notes.
It remains possible that an image from your
digital camera shot through your eyepiece may suffice as a data point. You will
need to shoot many of these thought to statistically reduce the noise and
increase the signal. This is why video is the preferred method of recording.
The cheapest easiest way is to buy a Supercircuits
PC164CEX-2 high sensitive security camera (http://www.supercircuits.com/Security-Cameras/Fixed-Security-Cameras/PC164CEX-2)
and put it in place of your eyepiece in your telescope. This camera has an
automatic gain, so to prevent saturation you will need to stop the aperture of
your telescope down. Another technique to avoid saturate is to put your image
out of focus until it is unsaturated. This is less desirable though as it can
blur the target and front moon to the point they overlap at closest approach
making it impossible to do photometry on them individually. Stoping
down the front of your scope with something like cardboard is the best method
here, unless you do use a video camera with controllable gain that you can
raise the shutter speed.
Here is an older page with some “How To”
tips:
http://scottysmightymini.com/JEE/HowToJEE.htm
For advance observers with spectroscopy
capabilities it is very desirable to get spectra of these JEEs to add to the
understanding of the structures and components of the dust surrounding Jupiter.
At
this time Scott Degenhardt has a standing offer to reduce your data. If you
take the time and effort make the recording or the snapshots he will reduce the
data for you. He has tools he has developed that expedite the process while
maintaining accuracy.
Contact
Scott at this email scotty@scottysmightymini.com
to discuss data reduction (or acquisition). All the data will go into a soon to
be formed JEE database. Papers will be published so it is very important that
you maintain good record keeping. Please be ready to provide the observers
name, location, instrumentation, timing methods, and contact information and
associations to go into a paper.
The call for observations for JEE2012 serves
the main purpose of getting as many people to observe whenever they can and
provide basic video or picture sequences over time during a predicted JEE so
that the photometric reduction of those data samples may one day collectively
yield a high resolution 3D model of the material scattered throughout the
Jovian system. Anyone willing to do spectroscopic observations during a JEE may
also contribute an accurate accounting of the specific molecules and their
ratios in these clouds of material.
A
complete current prediction kit through Aug 2102 is available here:
http://scottysmightymini.com/JEE/JEE2012_Jun_Aug.zip
JEE
predictions are made by me (Scott Degenhardt) who with the assistance of Wayne
Green learned about the plethora of data available at JPL’s Horizons data base:
http://ssd.jpl.nasa.gov/horizons.cgi
Using
Horizons I download ephemeris that allows me to make the following calculations
in an Excel spreadsheet:
Horizon’s
provides the X, Y offset from Jupiter’s center giving me a mutual reference
point for all four moons at any given time. To determine the distance in arc
seconds between Io (I), Europa (II), Ganymede (III), or Callisto
(IV) I take a pair of moons at a time and perform a hypotenuse calculation as
such:
SQRT((XI - XII)^2+(YI
- YII)^2)
The answer to this would be the true
separation in arc seconds of Io and Europa. Horizons also
provides me with the angular diameter of each moon at that reference
point of time. Knowing the diameter means I can divide that by 2 and get the
radius, which means I can set up a filter to look for any moons that pass within
a certain radius of another moon. Horizons provides Range data, i.e. the
distance the moon is from earth, so I can do a set of comparisons that is
basically like this:
·
Show me when Europa or Io is in front of another moon.
·
Highlight an event whenever Europa is in front and any object passes
within 25 Europa radii
·
Highlight an event when Io is in front and an object passes within 12
Io radii
So this gives me predictions of when an
object may experience extinction based on models we have surmised from the IAEP
study and other papers we have read.
Intensity data for each moon is provided by
Horizons. This allows me to take our estimates of predicted photometric
magnitude during a JEE by applying estimated extinction and predict the rate of
dimming as an object passes inside the boundary of the atmospheric models we
are currently using.
Using the X, Y offset of Io to Jupiter I can
set up a filter that highlights when Io is at its most eastern or western
elongation from Jupiter. At that time Io is in the center of its Torus
tip material. I have derived a 4th order polynomial fit to the
expected lightcurve during a passage through the tips of the Torus. I can take
the time from the center of the tip and predict the dimming and brightening
rates and then apply those to the photometric intensity provided by Horizons.
Most importantly… THESE ARE PREDICTIONS!
Anything can happen differently than predicted. So it is important to observe
long before and long after an event. We wouldn’t be making this study and observations
if we already had the answers. In fact, I suspect there will be new answers not
even thought of before this is all completed…
Here are some credits for data used in the
predictions:
Scott Degenhardt June 15, 2012
Send data correspondence to scotty@scottysmightymini.com
http://scottysmightymini.com/JEE/
Predictions package:
http://scottysmightymini.com/JEE/JEE2012_Jun_Aug.PDF
http://ssd.jpl.nasa.gov/horizons.cgi
Solar System Dynamics Group, Horizons On-Line
Ephemeris System
4800 Oak
Grove Drive, Jet Propulsion Laboratory
Pasadena,
CA 91109 USA
Information: http://ssd.jpl.nasa.gov/
Connect : telnet://ssd.jpl.nasa.gov:6775 (via
browser)
telnet
ssd.jpl.nasa.gov 6775 (via
command-line)
Author : Jon.Giorgini@jpl.nasa.gov
Guide 8 by Bill Gray
Starry Night 2007
Orion Special Edition
https://support.simulationcurriculum.com/home
Microsoft
Excel
The
IAEP team and data from that study:
Scott Degenhardt, S. Aguirre, M. Hoskinson, A. Scheck, B. Timerson
International Occultation Timing Association
(IOTA)
D. Clark
Administaff/Humble ISD Observatory
T. Redding
IOTA, Redding Observatory South
J. Talbot
RASNZ Occultation Section
Return to scottysmightymini
page